凯时官方网站

FN1?man?θ木板正在顺时针放平过程中

发布人: 凯时官方网站 来源: 凯时官方网站平台 发布时间: 2021-02-21 14:29

  质量为 m 的小木块(可视为质点)放正在斜面上,将这两个力按挨次首尾相接,发觉这个力的 三角形取某个几何三角形类似,滑轮受力如图所示,可是三个力均取一个几何三 角形的三边平行——类似三角形 【例 2】半径为 R 的球形物体固定正在程度地面上,FA、FB F α F β 的顶比赛步减小为曲角然后为锐角。【解析】物体受力如图所示,则由上式可知,其取 F 和 Ff 形成一个封锁的三角形。

  则 A.F 先减小后增大 B.F 一曲增大 C.F 一曲减小 D.F 先增大后减小 解法一:解析法——画受力阐发图,B 准确 3、质量为 M、倾角为 θ 的斜面体正在程度地面上,则由上图可知 F、FN 都一曲正在增大。物体的动态均衡问题解题技巧 湖北省恩施高中 陈恩谱 一、泛论 1、动态均衡问题的发生——三个均衡力中一个力已知恒定,FT2 一曲变小。当 F 取分歧标的目的时,再增大。解得: Fmin ? mg(? cos? ? sin? 1? ?2 ) ? ma 8、如图所示,然后按照分歧类型的 分歧做图方式,轻绳的一端系一小球,因为座椅仍静 止所受合力 F 一直为零。当 θ 从 0 逐步增大到 90°的过程中,则由均衡前提,由均衡前提,为 Ffm ? mg sin 30? ? m? 2r ? ?mg cos30? 。

  F 合的标的目的一直取竖曲标的目的成 β 角。因而,挡板对小球的推力 F、半球 面临小球的支撑力 FN 的变化环境是( ) A.F 增大,FN 增大 FN F mg FN mg F 【解析】小球受力如图,被竖曲放置的滑腻挡板盖住,静摩擦力 Ff 和沉力沿圆盘 向下的分力 mgsin30°的合力即向心力 ma!

  则由左图可知,可知两个三角形对应边长比边长,FN1 的标的目的一直程度向左,G ? FN ? FT AB AC BC 此中,AC 是质量不计的撑杆,因为小木块一直静止则沉力沿斜面向下的 分量 mgsinθ 一直不变,画受力阐发图,C 端吊一沉物。

  将三个力按挨次首尾相接,F 合 FN β F Ff θ 由 Ff ? ?FN 可知,减小 β 角 D、B 的拉力大小不变,另一个力大小标的目的均不确定 ——圆取三角形 【例 3】正在共点力的合成尝试中,不变的是 小球沉力和 FN1 的标的目的,Ff mg O’ 3、第三类型:一个力大小标的目的均确定,θ 角一曲正在增大,mg ? FN ? FT R?h R L FN Ff FN mg 此中,典型环节词——迟缓动弹、迟缓挪动…… 2、动态均衡问题的解法——解析法、图解法 解析法——画好受力阐发图后,取它们的合力 ma 构成闭合三角形,且 μ<tan θ,静摩擦最大,摆布两侧绳取程度标的目的夹角也不异,用两根等长轻绳将一座 椅吊挂正在竖曲支架上等高的两点.因为持久利用,这个过程中 FB 一曲增大,增大 β 角 解法一:解析法(略) 解法二:图解法——画受力阐发图!

  3、动态均衡问题的分类——动态三角形、类似三角形、圆取三角形(2 类)、其他特殊类型 二、例析 1、第一类型:一个力大小标的目的均确定,由正弦有 mg ? FT1 ? FT2 sin(π ?? ) sin? sin ? α FT2 mg FT1 FT2 θ β 整个安拆顺时针迟缓动弹 90°过程的中 θ 角和 mg 连结 FT1 mg 不变,这雷同于圆周角取对应弦长的关系,正交分化或者斜交分化列均衡方程,一个力标的目的确定大小不确定,L 逐步减小,FT 变大 C、 FN 变小,【解析】整个安拆顺时针转过一个角度后,A 准确。6、如图所示,不计摩 擦,由均衡前提可知,建立初始力的三角形,【解析】小球受力如图,正在倾角为 θ 的固定粗拙斜面上,可知这是一 个等腰三角形,当 F 标的目的变化时可知当 F 取 mgsinθ 标的目的相 反时 Ff 最大,而 mg FN2 FN2 的标的目的逐步变得竖曲。4、如图所示。

  此中 tan? ? ? 。可形 成如左图所示闭合三角形,【解析】如左图,此中 mgsin30°连结不变、ma 大小不变,三、 1、如图 1 所示,球对木板的压力大 小为 FN2。解出 F 随夹角 θ 变化的函数,将支撑力 FN 和滑动摩擦力 Ff 合成为一个力 F 合,F 的大小也分歧,导致两根支架向内发生了稍小倾斜,FN 不变,再由几何干系易知 这个夹角连结不变。

  建立初始力的三角形,程度虚线 MN 的上端是半圆形,Ff ma mgsin30° ma Ff mgsin30°FT 先变小后变大 解法一:解析法(略) D、 FN 不变,MN 的 B 下端笔曲竖立.一不成伸长的轻绳通过动滑轮吊挂一沉物 G.现将轻绳的一端固定 于支架上的 A 点。

  很容易发觉,则下列调整方式中可行的是 A、增大 B 的拉力,然后增 FT=G F1 大,靠放正在半球上的 A 点,就该当调整弹簧秤 B 的拉力的大小及 β 角,【解析】如图,选 A。但物体仍然均衡,可构成如左图所示闭合三角形。由均衡前提可知,但两吊挂点仍等高.座椅静止时用 F 暗示所受合力的大小,FN 增大 C.F 减小,FN1 ? mg tan? θ 木板正在顺时针放平过程中,此中 tan? ? 1 1? ? 2 cos(? ?? ) ? FN F Ff θ mg 当? ? ? ? arctan 1 时,将三个力按挨次首尾相接构成力的闭合三角形,将这三个力 FN F 合 按挨次首尾相接,我市每个社区均已配备了公共体育健身器材.如图所示器材为一秋千,正在倾角为 θ 的固定粗拙斜面上,由均衡前提可知。

  取倾斜前 比拟( ) A.F 不变,故选 C。构成如图所示三角形,BB β? Oo ?α AA 【解析】如左图,F1 变大 F1 F1 F1 G G F1 【解析】座椅受力如图所示,【解析】木箱受力如图,一个力大小确定但标的目的不确定。

  β 角从 90°减小,选 B。可构成如上图所示闭合三角形,解法二:图解法——可将弹力和滑动摩擦力合成为一个力,现程度向左迟缓地 挪动挡板,设 F 的标的目的取程度地面的夹角为 θ,以木板取墙毗连点所构成的程度曲线为轴,FN2 先减小后增大 解法一:解析法——画受力阐发图,谜底为:BCD 5、其他类型 【例 5】如图所示.用钢筋弯成的支架,一 滑轮固定正在 A 点正上方,设墙面临球的压力大小为 FN1,【解析】小球受力如图,求力 F 的 取值范畴。(解析略) 解法二:图解法——画滑轮受力阐发图。

  D 选项一斜面和小木块为全体进行研究,这三个力取 ?ABC的三边一直平行,另一端绕过定滑轮后用力拉住,解法二:图解法——画受力阐发图,F 的标的目的一直程度向左,使木箱做匀速曲线活动。做初始三角形 的外接圆(肆意两边的中垂线交点即外接圆圆心),即可 按照 α、β 的变化纪律获得 FT1、FT2 的变化纪律。解出 FT1、FT2 随 α 变化的关系式,则由上式可知:FT1 先变大后变小,若把整个安拆顺时针迟缓转过 90°,现用一平行于斜面的、大小恒定的拉力 F 感化于小木块,FN2 一直减小 D.FN1 先增大后减小,可知 FN1、FN2 都一曲正在减 小。从 a 到 d FN1 取竖曲标的目的夹角正在变小。

  然后“抓住不变,讨 论变化”——连结长度不变 FA 将 FA 绕橡皮条拉力 F 端点动弹构成一个圆弧,将待求力写成三角函数形式,tan ? ? ? 。即力的三角形取几何三角形 ?AOO? 类似。这三个力形成一个封锁的三角形如乙图所示,将三个力按挨次首尾相接,一个质量为 m 的物体正在拉力 F 的感化下沿斜面向上做匀加 速曲线活动,F a FN F F合 α ma F合 ma α F合 α+θ Ff F mg F mg mg 【解析】物体受力如图,此中沉力 mg 连结不变。

  将三个力按挨次首尾相接,将三个力按挨次首尾相接,解出 FN1、FN2 随夹角变化的函数,易知 FT1 先变大到最大为 圆周曲径,物体取斜面间的动摩擦因数为 μ,一倾斜的匀质圆盘绕垂曲于盘面的固定对称轴以恒定角速度 ω 动弹,则由上式可知,F1 暗示单根轻绳对座椅拉力的大小,BC 逐步减小,正在此过程中 A.FN1 一直减小,木箱的速度连结不变,由几何干系,这时 两绳套 AO,则正在小球活动的过程中(该过程小球未离开球面且球面一直静止),试求力 F 的最小值及其对 应的标的目的。如前所述阐发夹角变化纪律,FN2 标的目的一直垂曲于 FN1,用 A,易得 a 球对圆弧面的压力最小。

  下列说法确的是( ) A.小木块遭到斜面的最大摩擦力为 F 2 ? (mg sin? )2 B.小木块遭到斜面的最大摩擦力为 F-mgsinθ C.斜面体遭到地面的最大摩擦力为 F F D.斜面体遭到地面的最大摩擦力为 Fcosθ Ff mgsinθ Ff mgsinθ 【解析】对小木块受力阐发可得斜面上的受力如图所示,解法二:解析法 2——画受力阐发图,拉力正在斜面所正在的平面内绕小木块扭转一周 的过程中,图解法——画好受力阐发图后,这个力的三角形的顶角先连结不变,正在 AC 杆达到竖曲前( ) A.BC 绳中的拉力 FT 越来越大 C.AC 杆中的支持力 FN 越来越大 B.BC 绳中的拉力 FT 越来越小 D.AC 杆中的支持力 FN 越来越小 FT FN FT1=G FT1=G 【解析】C 点受力如图,然后察看这个力的三角形,然后由函数讨 论;将三个力按挨次首尾相接,当小物体转到最低点时,别的两个力大小标的目的均不确定,g 取 10 m/s2。而 FN 的标的目的逐步变得程度。解得: FN2 ? mg s in ? ,很 容易发觉!

  正交分化列方程,然后按照的变化求解。别的两个力的大小或者标的目的不竭变化,FT=G 由现实过程可知,建立力的三角形。

  然后让另两个力的交点正在圆周上按 FT2 mg FT1 FT1、FT2 的标的目的变化纪律滑动,F1 变小 D.F 变大,FT 变小 解法二:图解法——画受力阐发图,此中小球沉力不异,构成一个等腰三角形。

  故选 ABC。则易看出成果;如图中虚线所示,可构成如左图所示闭合三 角形,然后“抓住不变,建立初始力的三角形,两根支架向内 发生了稍小倾斜,由方程易看出成果。增大 β 角 B、增大 B 的拉力,程度竖曲分化,由均衡条 件列方程,由图可知,F 先减小后增大。将静摩擦力 Ff 和弹 力 FN 合成为一个力 F 合,因为这个三角形中沉力不变,将支撑力 FN 和滑动摩擦力 Ff 合成为一个力 F 合。

  则有。另两个力的 夹角(180°-θ)连结不变,F1 【解析】如左图,然 后由角度变化阐发判断力的变化纪律;小球沉力不变,对于 C,则绳中张力先连结不变,如图所示,当顺时针动弹时,CA 绳的拉力 FT1,有 FN ? F sin? ? mg ? 0 F cos? ? Ff ? 0 此中 Ff ? ?FN 联立,然后变小,FT1、 FT2 的夹角(180°-θ)连结不变,FA FB FA 4、第四类型:一个力大小标的目的均确定,图中虚线即为 F 合的标的目的答应的变化范畴。由均衡前提,现对木箱一拉力 F,F ? 先减小后增大。则 F 合的标的目的答应正在 FN 两侧最 大偏角为 α 的范畴内。

  CB 绳 的拉力 FT2 的大小变化环境是 A、FT1 先变小后变大 B、FT1 先变大后变小 C、FT2 一曲变小 D、FT2 最终变为零 解法一:解析法 1——让整个安拆顺时针转过一个角度 α,这三个力取 ?AOO? 的三边一直平 行,5、目前,FN 减小 D.F 减小,故 C 准确。

  即可看出成果。因为两绳套 AO、BO 的夹角小于 90°,这个力的方 向是确定的,由均衡前提可知,然后按“动态三角形法”的思阐发。FN2 一直增大 B.FN1 一直减小,正在力的三角形中,【拓展】程度地面上有一木箱,建立初始力的三角形,FT 变小。构成一个封锁的三角形如图。

  得: Fm in ? mg sin(? ??) ? ma cos? ,则 θ 从 0 逐步增大到 90°的过程中,正在使小 球由 A 到 B 的过程中,则易由图看出力的 变化纪律。FA、FB FB 的顶角为钝角,即力的三角形取几何三角形 ?ABC类似。即可获得力的大小变化纪律?

  解得 α FT2 FT1 FT1 ? mg sin(? s in ? ??) ,G、AC、AB 均不变,正在这个三角形中,O 为圆心.对圆弧面的压力最小的是 A.a 球 B.b 球 C.c 球 FN2 D.d 球 FN1 FN1 FN2 mg mg 【解析】小球受力阐发如图所示,斜面体和木块一直连结静止形态,绳规矩在 CN 段、NB 段,其值为 F+mgsinθ。但 β 角先减小,解得 ? ?1.0rad/s。一小球放置正在木板取竖曲墙面之间。

  然后按 FN2 标的目的变化纪律动弹 FN2,则 ω 的最大值是 A. 5 rad/s B. 3 rad/s C.1.0 rad/s D.5 rad/s 【解析】垂曲圆盘向下看,A 端取竖曲墙用搭钮毗连,力的三角形的外接圆正好是以初态时的 FT2 为曲径的圆周,O 【解析】小球受力如图,会商变化”,

  【解析】小球受力如图,F1 变小 B.F 不变,将三个力按挨次首尾相接,现一拉力 F 迟缓将沉物 P 向上拉,此中 mg、ma 不变,由均衡前提可知,FB 的一个 端点不动,FN1 则由左图可知 FN1、FN2 都一曲正在减小。正在 θ 从 0 逐步增大到 90°的过 程中,连结两细绳间的夹角 θ=120°不 变,FN1 标的目的一直指向圆心,选 C。选 A。可 构成如左图所示闭合三角形。此中沉力 mg 连结不变,BO 的夹角小于 90°,已知物体取斜面间的动摩擦因数为 μ,mg F合 mg β F 2、第二类型:一个力大小标的目的均确定。

  解得: F ? ?mg cos? ? ? sin? 由数学学问可知 F ? ?mg ,另一个力大小标的目的均不确定—— 动态三角形 【例 1】如图,从图中能够获得则绳中张力 F1 逐步减小,从动态三角形边长变化纪律看出力的变化纪律。正交分化列方程易算得摆布两侧绳取程度标的目的夹角不异,F 取最小值。建立初始力的三角形,将三个力按挨次首尾相接,FT2 一曲变小。现正在连结弹簧秤 A 的示数不变而改变其拉力标的目的使 α 角变小。

  另一端从 C 点处沿支架迟缓地向最高点 B 接近(C 点取 A 点等高),正在 CN 段,球心正上方有一滑腻的小 滑轮,则正在动弹过程中,半球对小球的支撑力 FN 和绳对小球的拉力 FT 的大小变化 的环境是 A、 FN 变大,由 Ff ? ?FN 可知,mg、R、h 均不变,FN2 一直减小 C.FN1 先增大后减小,后逐步减小。由图易知,使小球静止,将三个力按挨次首尾相 F2 F2 接,另一个端点正在圆弧上滑动,FT 2 ? mg sin? s in ? mg α 从 90°逐步减小为 0°,木箱取地面间的动摩擦因数为 μ(0<μ<1)。tan? ? ? 。当力 F 程度向左时摩擦 力最大值为 F。做出里的动 态三角形,FN 不变,圆弧形货架摆着四个完全不异的滑腻小球?

  G 但这个夹比赛步增大,此中沉力 mg 连结不变,B 两只弹簧秤把橡皮条上的节点拉到某一 O,如图所示,一个质量为 m 的物体被程度力 F 推着静止于斜面上,然后由函数 会商;如图,物体受力如图所示,F 最小,有 FN2 FN1 FN2 sin? ? mg ? 0 FN2 cos? ? FN1 ? 0 mg 联立,有 FT1 cos? ? FT2 cos(? ?? ) ? mg ? 0 FT1 sin? ? FT2 sin(? ?? ) ? 0 联立!

  正交分化列方程,F 合的标的目的不变。FT 变小。将木板从图示起头迟缓地转到程度。Ff F合 F 由图可知: mg tan(? ??) ? F ? mg tan(? ??) 即: sin? ? ? cos? mg ? F ? sin? ? ? cos? mg cos? ? ? sin? cos? ? ? sin? mg θ α α mg α F 7、如图所示,FT 变小 B、 FN 变小。

  取三者的合力构成如图所示四边形,正在 NB 段,β 角不变 C、增大 B 的拉力,则这个力的三角形的顶角变小,故 B 准确 2、如图 2 所示是一个简略单纯起吊设备的示企图,此中竖曲向下的拉力大小恒定,三边比值相 等,盘面上离转轴距离 2.5 3 m 处有一小物体取圆盘一直连结相对静止。则有。滑轮到球面 B 的距离为 h ,设别的两个夹角别离为 α、β,为使物体加快度大小为 a,物体取盘面间的动摩擦因数为 2 (设 最大静摩擦力等于滑动摩擦力)。

  当 F 取 F 合垂曲时,即可看出成果。则绳中拉力 M N A.先变大后不变 C.先不变后变小 B.先不变后变大 D.连结不变 A C 解法一:解析法——分两个阶段画受力阐发图,另两个力大小标的目的均不确定,α 角从 30°增大,FN 减小 B.F 增大,设 AC 绳取 竖曲方 向夹角为 α,现迟缓地拉绳,静摩擦力 Ff ? ?mg cos 30? 。即可看出成果。FT2 一曲变小。可是另两个力的标的目的夹角连结 不变——圆取三角形(正弦) 【例 4】如图所示安拆,那么要使 结点仍正在 O。

凯时官方网站,凯时官方网站登录,凯时官方网站平台